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Abstract. We develop a new methodology for model-based clustering.
Based on optimizing the log-likelihood, the standard approach pro-
vides a principled statistical framework for clustering where solutions
are found via the EM algorithm. However, as the log-likelihood is
nonconvex, convergence to only local optima can be guaranteed, and
practitioners rely on several starting points with the hope that one
of them will converge to the global solution. We consider a new loss
function based on entropic optimal transport with the same global op-
timum as the log-likelihood but a much better-behaved landscape so
that spurious local optima configurations known to be pervasive for
the log-likelihood are avoided. Similar to the EM algorithm for the log-
likelihood, this new loss can be optimized by the so-called Sinkhorn-EM
algorithm, which we show to enjoy similar convergence guarantees to
EM. By analyzing extensive numerical experiments and two real-world
applications on image segmentation in C.elegans microscopy and clus-
tering in spatial transcriptomics experiments, we show that this new
loss improves upon log-likelihood optimization, indicating it represents
a valuable clustering methodology for practitioners.
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1. INTRODUCTION

Cluster analysis is one of the most ubiquitous tasks in the practice of statis-
tics and data science as the necessity to determine latent group structure arises
in a myriad of applications such as bioinformatics Lo et al. (2008), social net-
work analysis (Handcock et al., 2007), text analysis (Blei et al., 2003), economics
(Wooldridge, 2003), image processing (Houdard et al., 2018), among others. The
mainstream statistical approach for clustering is the so-called model-based (Bou-
veyron et al., 2019; McLachlan, 1982; McNicholas, 2016), that hinges on the
inference of an underlying probabilistic generative model that typically takes the
form of a finite mixture of distributions, where each component represents an
observation model for samples within a cluster.

The primary inferential approach for model-based clustering is to perform max-
imum likelihood estimation on the mixture model, and the Expectation Maxi-
mization (EM) algorithm (Dempster et al., 1977) is the most widely used com-
putational tool for such inference as it exploits the inherent latent structure in
mixture models. However, the log-likelihood in mixture models is typically a
non-convex function, and often, the EM algorithm will converge to spurious local
optima (Biernacki et al., 2003). To deal with this issue, practitioners resort to
heuristics such as choosing sensible initializations (e.g., k-means++) or running
the algorithm on several seeds and keeping the one with the highest likelihood
(Biernacki et al., 2003). While practical, these heuristics are not guaranteed to
work, and they could lead to a systematic choice of sub-optimal solutions (Fränti
and Sieranoja, 2019; Steinley, 2003).
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We propose a new methodology for model-based clustering by importing tools
from Optimal Transport (OT) and show they mitigate the risk of getting trapped
in sub-optimal solutions. Optimal transport (Villani, 2008) is a mathematical
framework that provides us with a rich way of measuring the distance between
distributions, and it has enjoyed much attention in statistics, computer vision,
machine learning, and related fields (see, e.g., Kolouri et al. (2017); Peyré et al.
(2019) for surveys). We focus on Entropic Optimal Transport (EOT), a variation
of the original OT problem that includes an entropic penalization term. This for-
mulation possesses computational (Cuturi, 2013) and statistical advantages over
its unregularized version (Genevay et al., 2019a; Mena and Niles-Weed, 2019).

This paper is organized as follows: in Section 2, we develop a parameter esti-
mation framework for mixture models based on optimizing an entropic optimal
transport-derived loss and describe some basic properties. In Section 3, we de-
scribe an algorithm for optimization of this loss, paralleling the EM algorithm for
the log-likelihood and establishing elementary convergence properties. In Section
4, we show that our methodology can avoid bad local optima in cases where the
log-likelihood cannot. In Section 5, we give an in-depth convergence and local-
optima analysis in the elementary mixture of two Gaussians case, showing that
the performance of our method at least matches the known convergence rate for
the usual EM algorithm. In Section 6, we illustrate the benefits of our method in
large-scale experiments on simulated data. Then, in Sections 7 and 8, we describe
two real-world examples in image segmentation for C.elegans microscopy and clus-
tering in Spatial Transcriptomics experiments, where our proposed methodology
leads to tangible benefits. Finally, in Section 9 we sketch future directions and
comments on the limitations of our methodology.

1.1 Related Work

Our work contributes to scholarship on model-based clustering methodology
(Bouveyron et al., 2019; McLachlan, 1982; McLachlan et al., 2002). Although
not the main focus, our theoretical results connect to recent theoretical analysis
of convergence for EM algorithm seeking to obtain rigorous convergence guaran-
tees in simplified settings (Balakrishnan et al., 2017; Daskalakis et al., 2017a,b;
Dwivedi et al., 2020; Kwon et al., 2020, 2019; Wu and Zhou, 2019; Xu et al., 2016,
2018). Our local minima analysis is heavily inspired by the recent discussion of
the structure of spurious local optima for the log-likelihood (Chen and Xi, 2020;
Jin et al., 2016).

The use of optimal transport-based losses for parameter estimation has been
advocated in Bassetti et al. (2006); Bernton et al. (2019). Closer to our work are
Dessein et al. (2017); Rigollet and Weed (2018), who show that under some con-
ditions, maximizing the log-likelihood on a deconvolution model (e.g., a mixture)
yields the same solution as solving an entropic optimal transport problem. This
observation motivates the question of which scenarios we may expect benefits
from solving the EOT problem instead of maximizing the likelihood, and our
methodology gives a concrete example of a setup where we obtain benefits.

Several papers have advocated the use of optimal transport for clustering
(Canas and Rosasco, 2012; Cuturi and Doucet, 2014; Fettal et al., 2022; Genevay
et al., 2019b; Huizing et al., 2022; Kolouri et al., 2018; Laclau et al., 2017; Nejat-
bakhsh et al., 2020; Pollard, 1982; Titouan et al., 2020), demonstrating benefits
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over the likelihood-based approach. In particular, Nejatbakhsh et al. (2020) first
introduced Sinkhorn-EM, an algorithm that we study in detail here. Some of
these papers have suggested that the benefits of optimal transport are related to
avoiding spurious local optima (Kolouri et al., 2018; Yan et al., 2023), but the
question hasn’t been explored in mathematical detail. Our work provides a solid,
unifying perspective for explaining these phenomena.

1.2 Preliminaries

We take the following conventions and definitions: we consider a parametric
family on Rd given by a mixture of K components, defined as follows: Each mix-
ture component is parameterized through a location parameter θ and perhaps
other parameters ν (such a scale or variance parameter). Abusing notation, we
may ignore ν or collapse it with θ to refer to a unique parameter. The parame-
terized family of densities qθ (w.r.t. the Lebesgue measure L) expresses in terms
of the template density q as qθ(y) = qν(y − θ) = q(y − θ). Most of our spe-
cialized theoretical results focus on the Gaussian Mixture Model (GMM), i.e.,
qθ(Y ) = N (Y ; θ,Σ) (where Σ can be treated as fixed or as a parameter itself),
although our methodology is general enough to accommodate other cases such
as mixtures of t distributions McLachlan and Peel (1998), etc. To define the mix-
ture, for a vector α of weights in the probability simplex, we write our model as
the density qθ

qθ(y) =
K∑
k=1

αkqθk(y). (1)

Note that the mixture density (1) is a marginal density for a certain joint
model: let Qθ be the distribution associated with qθ and let Pθ be the measure
concentrated on the θ′ks so that it parameterizes the location parameters,

Pθ =
K∑
k=1

αkδ(θk). (2)

Then, Qθ is the marginal distribution of the joint QX,Y
θ with density

dQX,Y
θ (x, y) = qx(y)dPθ(x)dy = q(y − x)dPθ(x)dy. (3)

For the above model we define the negative log-likelihood as

ℓ(θ) = −E (log qθ(Y )) , (4)

where the expectation is taken with respect to the true distribution of data, i.e.
Y ∼ Q∗. In the well-specified case where data was generated according to mixture
(1) with true parameter θ∗ we write Qθ∗ . We will sometimes write qθ,α(y), Pθ,α

and ℓ(θ, α) to make the dependence in α explicit, and α can either be considered
a parameter to be optimized (as in Section 3.2), although otherwise stated α is
fixed. In some cases it will be convenient to see Pθ as a measure pθ on the set
[K] = {1, . . . ,K} such that pθ(k) = P (X = θk) = αk. Likewise, we may see QX,Y

θ

as a measure on [K]× Rd.
In practice, we work with a sample Y1, . . . , Yn from Q∗ or Qθ∗ , so we will con-

sider empirical versions of population quantities such as ℓ where the expectation
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is taken with respect to the sample. Most of the elementary results grounding
our methodology are valid in the population and sample case, while others only
hold in the population case. We will make the distinction clear. Likewise, some
of our theoretical results (e.g., local optima, convergence) are based on the anal-
ysis of the population landscape of ℓ and related loss functions. Still, they don’t
necessarily hold in the sample case.

2. THE ENTROPIC OPTIMAL TRANSPORT LOSS AS AN
ALTERNATIVE TO THE LOG-LIKELIHOOD

In this section, we will define a new loss function for estimation in the model
(1) based on entropic Optimal Transport. We must first provide some elementary
definitions but refer the reader to, e.g., Peyré et al. (2019) for a comprehensive
treatment of the topic.

Let P and Q be two probability measures on Rd. Given a cost function c :
Rd × Rd → R, we define the entropy-regularized optimal transport loss between
P and Q as

S(µ, ν) := inf
π∈Π(µ,ν)

[ ∫
Rd×Rd

c(x, y) dπ(x, y) +H(π|µ⊗ ν)
]
. (5)

where Π(µ, ν) is the set of all joint distributions with marginals equal to µ and
ν, respectively, and H(α|β) denotes the relative entropy between measures α and
β defined as

∫
log dα

dβ (x)dα(x) if α ≪ β and +∞ otherwise. A useful alternative
representation of S(µ, ν) is in terms of a reference Gibbs kernel with density pro-
portional to exp(−c(x, y))dµ(x)dy (see Mena and Niles-Weed (2019) for details):

S(µ, ν) = inf
π∈Π(µ,ν)

H(π|e−cµ⊗ L)−H(ν|L). (6)

We define the entropic OT loss function for parameter estimation in model (1) as
L(θ) = S(Pθ, Q∗). To make the correspondence precise with model (1) we must
restrict to cost functions of the form c(x, y) = − log qx(y) = − log q(y−x) so that
we recover the joint densities QX,Y

θ in (3) as the set of Gibbs kernels in (6), i.e.,

L(θ) := S(Pθ, Q∗) = inf
π∈Π(Pθ,Q∗)

H
(
π|QX,Y

θ

)
−H(Q∗|L). (7)

For example, in the simplest Gaussian case we let c(x, y) = ||x−y||2
2σ2 , and for a

mixture of Laplace distributions we make c(x, y) = |x−y|
b . As the last term in (7)

doesn’t depend on θ, L(θ) is indeed a discrepancy between the model (3) and data
(roughly understood as a coupling π between Pθ and Q∗). In this definition, the
dependence on the location parameters is fully encapsulated in the base measure
Pθ, and by making the cost function vary, we can also represent dependency on
other parameters such as variances and scales.

Although perhaps not obvious, L is intimately related to ℓ. First, in the well-
specified case, we have that L(θ∗) = ℓ(θ∗) at the true θ∗. To see this, we note
that if θ = θ∗ the coupling π achieving the infimum is exactly the joint QX,Y

θ∗ in
(3), so the relative entropy term is zero. Second, we have that L(θ) ≥ ℓ(θ). This
follows from another useful alternative representation of the entropic OT loss,
the so-called semi-dual formulation Peyré et al. (2019):

S(µ, ν) = sup
ω

∫
ω(x)dµ(x)−

∫
log

(∫
eω(x)−c(x,y)dµ(x)

)
dν(y),
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where the semi-dual potential ω is a bounded function. In our context ω is a
K-dimensional vector so

L(θ) = sup
ω∈RK

[
K∑
k=1

αkωk − E

(
log

(
K∑
k=1

αke
ωkqθk(y)

))]
, (8)

and since optimization over ω includes ω = 0 it follows that L(θ) ≥ ℓ(θ).
The semi-dual potentials can be interpreted as a way of tilting the original

weights α: for each θ denote ω(θ) the one maximizing (8) and define the vector
α(θ) ∈ RK as

α(θ)k =
αke

ω(θ)k∑K
k′=1 αk′eω(θ)k′

. (9)

Then

L(θ) = H (α|α(θ))− E

(
log

(
K∑
k=1

αk(θ)qθk(Y )

))
. (10)

Therefore, the computation of L(θ) amounts to the computation of ℓ(θ) for a
tilted model with weights α(θ), plus a relative entropy term. In particular, since
this relative entropy doesn’t depend on θ, we have by the envelope theorem that

∇L(θ) = ∇ℓ(θ, α(θ)). (11)

While the analysis of the second derivatives of L is more complicated, it is possible
to show that L has more strictly more curvature. We summarize all this discussion
in the following proposition. A complete proof appears in Appendix A.1.

Proposition 1. Let ℓ and L be as in (4) and (7), respectively. The following
statements are true

(a) L(θ) ≥ ℓ(θ).
(b) L(θ∗) = ℓ(θ∗) if Q∗ = Qθ∗.
(c) ∇L(θ) = ∇ℓ(θ, α(θ)), where α(θ) is as defined in (9)
(d) L has more curvature than ℓ around θ∗ if Q∗ = Qθ∗. Specifically,

∇2L(θ∗) = ∇2ℓ(θ∗) +B⊤(θ∗)A−1(θ∗)B(θ∗),

where A(θ∗) is a K−1×K−1 definite positive matrix. Explicit expressions
for A(θ∗), B(θ∗) are given in Appendix A.1.

(a) and (c) are valid both in the population and sample versions of L and ℓ, while
(b) and (d) are valid only in the population versions, in the well-specified setup
(Q∗ = Qθ∗).

Fig. 1A illustrates Proposition 1. As a consequence of (a) and (b), in the pop-
ulation limit, L is also minimized at θ∗, and the curvature statement (d) suggests
that L might be a better optimization objective than ℓ. However, since both
L and ℓ are typically non-convex, many local optima may exist for both func-
tions and the local statement of Proposition 1 doesn’t say much about the global
convergence of first-order methods. In Section 4, we show that for a mixture of
Gaussians, L will typically avoid bad-local optima configurations that are perva-
sive for ℓ, making a much stronger case in favor of L as an optimization objective.
Before that, in the following section, we describe an algorithm for optimizing L
and make a parallel with the usual EM algorithm.
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Figure 1: Qualitative comparison between the log-likelihood and entropic OT loss.
A By Proposition 1, the entropic OT loss dominates the negative log-likelihood
but has a larger curvature around the minimum. B By Theorem 4, in the model
(24) L has fewer bad local minima than ℓ for some values of α∗.

3. ALGORITHMIC ASPECTS: SINKHORN-EM

In principle, we could consider any first-order method to find the local optima
of L and ℓ. In the case of ℓ practitioners typically appeal to the EM algorithm
(an instance of a first-order method Xu and Jordan (1996)). This algorithm ex-
ploits the underlying latent structure of the mixture model (1), and its appeal is
ultimately justified by a rich body of work establishing its theoretical guarantees
(e.g., Balakrishnan et al. (2017); Daskalakis et al. (2017b); Redner and Walker
(1984)). Pivoting on the relationship between ℓ and L from the previous section,
we describe an EM-type algorithm for optimizing L, which we name Sinkhorn-
EM, and establish some elementary convergence guarantees.
The main observation is that as a consequence of the well-known variational
representation of log qθ, we can write:

ℓ(θ) = inf
π∈Π(·,Q∗)

H
(
π|QX,Y

θ

)
−H (Q∗|L) , (12)

where the set Π(·, Q∗) is the set of joint distributions with arbitrary first marginal
and second marginal Q∗. By disintegration, this set can be represented by Q∗
along with a set of conditionals π(·|y). The EM algorithm exploits this varia-
tional representation as it can be understood as coordinate descent on θ and π
to minimize ℓ in (12) (Csiszár and Tusnády, 1984; Neal and Hinton, 1998).

By comparing (7) and (12) we see that L and ℓ only differ in that the varia-
tional representation of the former has an additional constraint. This observation
motivates the definition of Sinkhorn-EM (SEM) as the algorithm performing co-
ordinate ascent on θ and π to minimize the variational representation (7).

Sinkhorn-EM only differs from EM in the E-step. For the EM algorithm, this
step corresponds to the computation of the so-called responsibilities, the set of
conditionals of X given y at the current θ in the joint model (3), i.e., the set of
measures

Ψk (y, θ, α) := dQX,Y
θ,α (k|y) = αkqθk(y)∑K

k=1 αkqθk(y)
. (13)

Instead, Sinkhorn-EM solves an entropic Optimal Transport problem on the E-
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step. If πθ is the optimal coupling to (7) we have

Ψk (y, θ, α(θ)) = πθ(k|y) = dQX,Y
θ,α(θ)(k|y) =

α(θ)kqθk(y)∑K
k=1 α(θ)kqθk(y)

. (14)

where α(θ) is the tilted version of α defined in (9) so that the constraint on
the first marginal expresses as

E (Ψk (Y, θ, α(θ))) = αk. (15)

Therefore, the familiar understanding of the E-step as the computation of re-
sponsibilities is retained, although in a somewhat different sense. This signifies an
extra computational burden compared to (13): while each E-step of the standard
EM algorithm takes time O(n·K), where n, the E-step of Sinkhorn-EM involves a
convex optimization problem and can be solved by an efficient a celebrated algo-
rithm due to Sinkhorn and Knopp (1967) which converges in near-linear time, i.e.
Õ(n ·K) (Altschuler et al., 2017). As we will see in Section 4, this mild overhead
in operation complexity is easily compensated for in practice because SEM often
avoids bad solutions.

We can now state the Sinkhorn-EM algorithm and establish an elementary
convergence property.

Theorem 1. Let Sinkhorn-EM be the algorithm defined as the sequence (πt, θt)
from the E and M steps below:

E-step : πt+1 = πθt = argmin
π∈Π(Pθt ,Q∗)

H
(
π|QX,Y

θt

)
(16a)

M-step : θt+1 = argmax
θ

E

(
K∑
k=1

πt+1(k|Y ) log (αkqθk(Y ))

)
(16b)

= argmax
θ

E

(
K∑
k=1

Ψk(Y, θ
t, α(θt)) log (αkqθk(Y ))

)
,

where θ0 is arbitrary. Then, the sequence {L(θt)} is nonincreasing and L(θt+1) <
L(θt) if θt is not a stationary point of L. If θt converges, then the limit is a
stationary point of L.

Although the convergence of θt is not guaranteed in general, by trivially ex-
tending the results of Wu (1983), this can be established if L satisfies some
regularity conditions (such as continuity, radial unboundedness) which typically
hold whenever they hold for ℓ as well.

3.1 The Gaussian Mixture Model

Our more specialized theoretical results will be stated in the following GMM

qθ(Y ) =

K∑
k=1

αkN (Y ; θk, Idσ
2) 0 < αk < 1, σ2 > 0, (17)

with true parameter θ∗. In that case, M-step (16b) reads
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θt+1 = F (θt, α(θt)),

with

F (θ, α)k :=
E (Y (Ψk(Y, θ, α))

E (Ψk (Y, θ, α))
=

E (Y (Ψk(Y, θ, α))

αk
. (18)

Note that for the usual EM algorithm, we would otherwise consider the simpler
θt+1 = F (θ, α) iterations.

3.2 Weights update

Sinkhorn-EM can, in principle, only be deployed in fixed-weights setups: as
the E-step imposes a marginal constraint on weights α, it is bound to remain
on those initial weights. However, nothing prevents us from considering L as
a function of α as well, as it is customary for mixture models with unknown
weights. To enable weight inference we consider simple exponentiated gradient
(or mirror descent with relative entropy as Bregman divergence, Kivinen and
Warmuth (1997)) updates for α. The gradient of L with respect to α is given by

∇αL(θ)k = ω(θ)k − E

(
Ψk(Y, θ, α(θ))

αk

)
. (19)

Then, for a step-size η > 0, current α and fixed θ, an update for α reads:

αnew
k =

αk exp (−η∇αL(θ)k)∑K
k=1 αk exp (−η∇αL(θ)k)

. (20)

Whenever inference for α is required, we will couple usual Sinkhorn-EM updates
(16a),(16b) for θ along with updates for α.

4. ON LOCAL OPTIMA

Theorem 1 in the previous section provides us with machinery to efficiently
optimize L, a function that in Proposition 1 was shown to enjoy a better curvature
property than ℓ, around θ∗. However, since both EM and SEM can only shown to
converge to stationary points of the respective ℓ and L, and since these stationary
points may abound, this local property says little about the success or failure of
these algorithms in practice.

In Theorem 2 below, we make a much stronger case favoring L as optimization
objective: when qθ is a spherical mixture of Gaussians with equal weights and
variances σ2, then L won’t possess a type of bad-local minima that are pervasive
for the log-likelihood if some (mild) separation condition is met. These spurious
local minima are the so-called many-fit-one configurations, where a subset of fit-
ted mixture components are close to a single true component θ. These structures
were anticipated in Jin et al. (2016), which gave an explicit construction of a
bad local minima for ℓ in one dimension consisting of two nearby components
that are both far away from a third isolated component. Here, in Proposition 2
below, we also provide a simple extension of this result to the bi-variate case,
showing that the negative log-likelihood associated to mixture of three Gaussians
with true centers at θ∗1 = (0, D), θ∗2 = (0,−D) and θ∗3 = (R, 0) has a bad local
minimum with one component close to (0, 0) (the average of θ∗1 and θ∗2) and the
two others close to θ∗3. This illustrates the potentially catastrophic effect of bad
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local minima for the negative log-likelihood: although the component (0, R) is
identified, the signal on the y axis is entirely destroyed by averaging (see Fig 2A
for a depiction).

Proposition 2. Consider a mixture of three Gaussians in R2 with equal
weights and variances σ2 = 1 and true locations θ∗1 = (0, D) ,θ∗2 = (0,−D) and
θ∗3 = (R, 0). For ε > 0 define the region Rε in R6

Rε :=

{
θ = (θ11, θ

2
1, θ

1
2, θ

2
2, θ

1
3, θ

2
3) : θ

1
1 <

R

3
, θ12 >

2R

3
, θ13 >

2R

3
, ||θ2|| < ε

}
.

If R is large enough, then ℓ(·) has a bad local minima in θ ∈ Rε. Informally,
θ is on a neighborhood of the configuration θ1 ≈ 1

2 (θ
∗
1 + θ∗2) = (0, 0) and both

θ2 ≈ θ3 ≈ θ∗3 = (R, 0).

The existence of these structures has been recently studied in much more detail
in Chen and Xi (2020), showing that local minima of the negative log-likelihood
(with equal weights and fixed variance) roughly correspond to generalized forms of
the above prototypical local minima. They show that if all components are all well
separated from each other (i.e. if ∆min := mink1,k2≤n

∥∥θ∗k1 − θ∗k2

∥∥ is large enough)
then the components of any spurious local minima θ of ℓ(·) partition into groups
forming either a many-fit-one configuration, or a one-fits-many configuration,
where a θk is placed near to the average of a group of some true θ∗k.

Although appealing, the result of Chen and Xi (2020) suffers from three draw-
backs: first, the required lower bound on ∆min is too stringent to provide any
insight in practical setups (∆min ≥ 18(

√
2π + 1)K5σ). Also, it only provides

necessary conditions for local optimality, but it does not indicate which such con-
figurations eventually realize as local minima among all possible. Third, other
components of any such local minimum may satisfy a degenerate so-called “near
empty association” condition distinct from the above many-fit-one and one-fit-
many.

Even if a complete characterization of local minima of ℓ is far from complete,
we can take the above discussion as a starting point to frame our main result.
In Theorem 2, we show that many-fit-one configurations where the rightmost
true θ∗k’s are fitted by a bigger number of components θk’s are not possible for
stationary points θk of L whenever certain separation condition is met.

Theorem 2. Suppose that data has been generated by an equally weighted
GMM of K components in Rd with variance σ2 and means θ∗k that we fit with the
mixture qθ in (17) with the same weights and variances but varying parameters
θk. Consider an arbitrary dimension and sort the true component means θ∗k from
lowest to highest in that direction. For any given k1, k2 such that k1+ k2 = K we
define two groups of components, G1 given by the k1 leftmost components and G2

by the k2 rightmost. Let ∆ be the distance between the leftmost component in G2

and the rightmost in G1.
Suppose θ is a stationary point of L, and that a group O of k̃ > k2 distinct

components of θ cover the k2 rightmost true components in the sense that for
some δ > 0 and every true component θ∗k with k ∈ G2 there is at least one fitted
component θk′ with k′ ∈ O such that

θ∗k − θk′ ≤ δ. (21)
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Figure 2: Local optima in the example of Proposition 2. A. By Proposition 2, the
negative log-likelihood has a bad local minimum around the configuration θ, i.e.
within the region Rε. B by rotating axes we can apply Theorem 2 to rule out
any stationary point for L in such region if R is large enough.

Take any tolerance level 0 < α < 1 − k2/k̃. If the following separation condition
holds

∆ ≥ σ
(
(2π)

(
(1− α)k̃ − k2

))−1
K. (22)

Then
δ > α∆ > 0. (23)

Intuitively, minimizing L imposes an additional constrain in the way that mass
is split over the space: that for a stationary point θ of L, it must be the case that∑K

k=1 θk =
∑K

k=1 θ
∗
k. This balance condition (that doesn’t hold for stationary

points of the log-likelihood) cannot occur if many more fitted components are
placed near a lower number of rightmost true components θ∗.

In particular, from Theorem 2 we can rule out the bad local minimum in Rε

for L if R is large enough, as shown in Fig. 2B. This is stated as follows (a proof
appears in Appendix A.6)

Corollary 1. If R2 ≥ 9D2 and D ≥ 2 then L cannot have a stationary
point in the region Rε.

An important question is whether L can have other types of local minima that
don’t exist for the log-likelihood, offsetting the benefits of Theorem 2. While we
don’t attempt to provide a general answer to this question (a characterization of
local optima is barely available for the log-likelihood under extremely stringent
separation conditions), our results suggest that we should not expect that L
has a wildly different set of local minima relative to ℓ. Indeed, from Proposition
1(c), every stationary point of L is a stationary point for the log-likelihood on a
GMM for some tilted weights α(θ). Moreover, we have the following corollary of
Proposition 1. The proof appears in Appendix A.2.

Corollary 2. For the GMM in (17), if θ is a local minimum for the negative
log-likelihood then it must be a local minimum for the entropic OT loss.
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5. ANALYSIS OF A SYMMETRIC MIXTURE OF TWO GAUSSIANS

In this section, we give more specialized results in the following unbalanced
(with fixed α∗ < 1) mixture of two Gaussians in R with a single one-dimensional
parameter θ:

qθ(y) = α∗N (y; θ, 1) + (1− α∗)N (y;−θ, 1). (24)

The first result, Theorem 3, complements our results on local minima from
Section 4. As illustrated in Fig 1B, we show that compared to ℓ, L will more
often have a unique local minima. This result is based on a fine analysis of ℓ
and L and their derivatives and doesn’t immediately relate to the ideas around
Theorem 2.

Theorem 3. Consider the unbalanced symmetric model (24). For any θ∗ > 0,
the set of α∗ for which θ∗ is the unique stationary point of L is strictly larger
than the one for ℓ.

We also provide an in-depth analysis of the basin of attraction of Sinkhorn-EM
towards the global minimum and the convergence speed: we show that as long
as SEM is initialized at θ0 > 0, it enjoys fast (exponential) convergence to the
global minimum of L, and there is a large range of initializations on which it
never performs worse than EM.

Theorem 4. For the model (24), for each θ∗ > 0 and initialization θ0 > 0,
the iterates of SEM converge to θ∗ exponentially fast:

|θt − θ∗| ≤ ρt|θ0 − θ∗|, with ρ = exp

(
−min{θ0, θ∗}2

2

)
. (25)

Moreover, there is a θfast ∈ (0, θ∗) depending only on θ∗ and α∗ such that if
SEM and EM are both initialized at θ0 ∈ [θfast,∞), then

|θt − θ∗| ≤ |θtEM − θ∗| ∀t ≥ 0 , (26)

where θtEM are the iterates of EM. In other words, when initialized in this region,
SEM never underperforms EM.

Although the model (24) is certainly restrictive, it is one of the few cases
where the explicit exponential rate of convergence has been established for the
EM algorithm. The fact that SEM matches this rate suggests that replacing the
ordinary E-step with the new (16a) doesn’t entail a substantial slow-down.

6. EXPERIMENTS ON SIMULATED DATA

To empirically study the benefits of optimization of L, we conducted a series of
experiments on simulated mixtures of Gaussians. We compared the result of the
optimization of L to two competitive baselines: the EM algorithm and K-means.
For initialization, we used the K-means++ method (Arthur and Vassilvitskii,
2007) as implemented in Pedregosa et al. (2011). This initialization samples θ01
at random from data, and subsequently, each θ0k is sampled from the empirical
distribution of not already chosen data points with probability proportional to
D2, where D is the minimum distance between each remaining data-point and the
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previously selected θ01, θ
0
k−1. We used several initial seeds and reported individual

realizations or the best among different seeds. To select the best seed, we use the
inertia function (Pedregosa et al., 2011) for K-means and the log-likelihood for L
and l (we did not observe significant differences by using the same L as selection
criteria for L).

We study how results change as a function of the number of components K,
the variance of components σ2 (or Σ in the non-spherical case), dimension d, the
number of samples n, and α. We divide the experiments into three parts: known
weights and known K (Section 6.1), Unknown weights and known K (Section
6.2), and known weights and unknown K (Section 6.3).

We considered two performance metrics: first, as a direct measure of how well
the parameters were inferred, we use the squared average distance between true
and fitted centers, which we call simply the error :

error(θ, θ∗) = min
π∈Perm(K)

1

K

K∑
k=1

||θπ(k) − θ∗k||2. (27)

Since centers are defined up to permutations, we must search among all possible
permutations Perm(K) of K indexes, a computation that we state as an optimal
transport problem Flamary et al. (2021). Second, we used the Adjusted Rand
Index (ARI) (Hubert and Arabie, 1985) to measure the similarity between the
actual and fitted clustering solutions. The ARI is a number between 0 and 1,
with values closest to one indicating greater similarity.

6.1 Known weights and known K

We study clustering performance as a function of number of components K
and a variance parameter σ2. We consider the following experimental setups:
i)spherical variance with known variance σ2, ii) elliptical variance with diagonal
entries sampled from a uniform distribution between 0.5σ2 and 1.5σ2, iii) and
iv) same as i) and ii) but with unknown variances to be estimated. For each
parameter configuration, we sample a number of nexp = 200 datasets, and on
each of them, we run three methods for a number of nseed = 5 different random
K-means++ initializations. We considered two sample sizes n = 200 and n = 1000
and dimensions d = 2, 5, 10, 20. In all cases, we use equal weights αk = 1/K. In
cases where σ2 must be inferred, we use the identity matrix as an initial estimate.

Fig. 3 shows a summary for experiment i). Both EM and Sinkhorn-EM typ-
ically improve upon the K-means baseline, although the improvement for SEM
is the largest (Fig. 3A, B). As a result, Sinkhorn-EM attains the best perfor-
mance among the three algorithms by far, whether at the level of individual
seeds or the best seed. The interplay between relative performance and σ2 and
K is complex: although differences are observed at each K if K is small (e.g.,
K ≤ 10), these differences vanish once considering the best seed, indicating that
EM and K-means are still capable of finding the global solution. However, for
larger values of K, Sinkhorn-EM consistently avoids bad local optima while EM
and K-mean++ struggle, even with several seeds. The performance of Sinkhorn-
EM also deteriorates for large K, suggesting that it cannot entirely escape bad
local optima. Similarly, if σ2 increases, the performance of all algorithms dete-
riorates, but Sinkhorn-EM performs consistently better, in line with Theorem
2 which imposes a minimum separation condition so that the guarantee holds.
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Also, if σ2 is too small then all algorithms will recover the true solution. This
suggests that there is a mid-range of values for which Sinkhorn-EM is most bene-
ficial. In Appendix B we provide a more detailed account of experimental results
by breaking them down into further experimental conditions, and here we give a
brief summary: first, by observing that similar results are obtained for n = 200
and n = 1000, suggesting that we can ignore the finite-sample related errors (Figs
B.3 and B.4). Second, perhaps unintuitive, larger values of d are associated with
lower error for three algorithms. This is a consequence that the K-means++ ini-
tialization consistently produces better estimates in such cases, which is helpful
in all algorithms. Again, there is a range of values of d where Sinkhorn-EM is
most beneficial, and this range depends on σ2 as well.

Results for experiments ii), iii) and iv) are also presented in Appendix B.
Sinkhorn-EM still attains the lowest regardless of whether the true variance is
spherical or diagonal (and different for each cluster) (Fig. B.5) and whether the
variance is fixed or has to be inferred (Figs. B.6, B.7).

Figure 3: Results for experiment in Section 6.1 with known weights αk = 1/K
and known K, for a mixture of spherical Gaussians with variance σ2. A: Error
difference between Sinkhorn-EM and K-means (y-axis) and between EM and K-
means (x-axis). Each random seed is considered individually in the left plot, and
in the right plot, we consider the best among five seeds. B: same as A but with
ARI score. C: Comparison of errors for each algorithm for varying K and σ2. The
error bar represents the interquartile range. D: same as C but with ARI score.

6.2 Unknown weights and known K

The setup is the same as experiment i) in Section 6.1, but with unknown
(and not necessarily uniform) weights. We treat α as a parameter and update
it using (20) by performing coordinate descent on θ and α until convergence.
In detail, to update θ we apply Sinkhorn-EM with current αt until convergence,
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leading to θt+1. To update α we successively apply mirror descent updates (20)
with current θt until convergence, leading to αt+1. On each update, we start
with η = 1 and make η ← η/2 until L decreases with respect to initial αt. We
always initialize α as the vector of uniform weights and study performance as
a function of deviations from uniformity that we measure with the parameter
γ, the concentration of a Dirichlet distribution. For each γ, we consider nexp =
200 experiments where weights are sampled from a Dirichlet distribution with
parameters γ/K. Smaller values of γ indicate a larger deviation from the uniform
distribution. For comparison, we also include the algorithm that doesn’t update
weights as a baseline, i.e., we perform inference on a model with misspecified
weights αk = 1/K.

Results are summarized in Fig. 4. Benefits of SEM algorithm are observed
for moderately large values of γ (e.g., γ > 10) whenever weight updates are
applied. If weights are not updated, however, the performance of SEM and EM
are similar. This is a remarkable result: although we lack a local optima theory
for L in the case of unequal and/or unknown weights, we observe benefits if
parameter (θ) updates are coupled with weight updates. The fact that benefits
are not observed if weights are not updated indicates that this benefit doesn’t
come from “continuity”.

γ =  1 γ =  10 γ =  20 γ =  50 γ =  100 γ =  1000

K−means EM SEM K−means EM SEM K−means EM SEM K−means EM SEM K−means EM SEM K−means EM SEM
0.000

0.025

0.050

0.075

0.100

E
rr

or

γ =  1 γ =  10 γ =  20 γ =  50 γ =  100 γ =  1000

K−means EM SEM K−means EM SEM K−means EM SEM K−means EM SEM K−means EM SEM K−means EM SEM
0.00

0.25

0.50

0.75

A
R

I

Update weights

No
Yes

K−means
EM
Sinkhorn−EM

Figure 4: Results for the unknown weights case in Section 6.2. Bars indicate the in-
terquartile range. For mixtures with close-to-uniform weights (γ large) Sinkhorn-
EM is the most advantageous algorithm, and the weight update procedure defined
in Section 3.2 reduces the error with respect to keeping the (wrong) weights fixed.

6.3 Known weights and unknown K

We treat the unknown number of components case as a model selection prob-
lem over K. For each true K, we fit the model using several candidate models
with Kmodel ∈ {K−5,K+5} and estimate K̂ as customary, via the Bayesian In-
formation Criterion (BIC) (Kass and Wasserman, 1995; Smith and Spiegelhalter,
1980) (not available for K-means). We quantify the estimation error as the differ-
ence K − K̂ between the actual and inferred number of components. Compared
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to EM, SEM recovers the true number of components much more often. More-
over, in our experiment, SEM never overestimates the number of components
(K̂ > K). In Appendix B (Fig. B.8) we provide detailed results for different
choices of parameters.
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Figure 5: Number of components estimation error histograms for the experiment
in Section 6.3. A: results for different seeds. B: results for the best seed

7. APPLICATION TO IMAGE SEGMENTATION IN C.ELEGANS
MICROSCOPY DATA

One of the conclusions of Section 6 is that SEM is most beneficial when the
number of clusters K is large. In this Section, we show that this observation
materializes on a real-world neural segmentation task that can be framed as the
fitting of a mixture of a GMM with multiple components (neurons).

C. elegans is a roundworm used as a model organism in neuroscience for
decades due to its stereotypic brain organization and simple structure consist-
ing of 302 neurons. Automated neuron identification and segmentation of C.
elegans is crucial for conducting high-throughput experiments for many applica-
tions, including the analysis of gene expression profiles, cell fate studies (Sulston
et al., 1983), stem cell research, and the study of circuit-level neuronal dynamics
(Kato et al., 2015). NeuroPAL, Yemini et al. (2021) a recently introduced novel
transgenic strain of C. elegans has a deterministic coloring of each neuron, en-
abling the disambiguation of nearby neurons and aiding in their identification
Varol et al. (2020). We treat the segmentation problem of neurons in NeuroPAL
C.elegans images as one of clustering using Gaussian Mixture Models. Given a
colorful volume represented by six dimensions (three spatial coordinates and three
dimensions for the RGB colors), we aim to recover the locations centers θk of the
K neurons in the recorded volume, along with their shapes Σk. We can then
segment the image using the responsibilities Ψk, which encode the probabilistic
assignment of the pixels to the cells.

In Fig. 6, we compare segmentation using the EM algorithm as a baseline
to compare against. Fig. 6B illustrates the primary mode of failure of EM that
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explains why SEM outperforms it: EM may typically collapse two nearby cells
into a single component, a pathology that SEM most often avoids. This collapse
can be directly understood in terms of the “many-fit-one” local optima described
in Section 4.

These results indicate that SEM is a valuable alternative to the more tradi-
tional EM in this real-world setup characterized by a dense mixture of Gaussians
with many (K > 20 clusters). Our results were first hinted by Nejatbakhsh et al.
(2020), and here are able to further elaborate on them and to provide a theoret-
ical understanding of the supremacy of SEM. Details of our experiments appear
in Appendix B.2.

Figure 6: Results on a C.elegans segmentation task.A: An illustration of a worm’s
brain. The task is identifying different locations (coloured dots) from volumet-
ric images. B: Comparison between a typical segmentation outcome of EM and
Sinkhorn-EM algorithms. The first column shows a true microscopic image con-
taining a subset of neurons. The second column shows pixels containing neurons.
All remaining columns show identified neurons for Sinkhorn-EM and EM meth-
ods as indicated by the responsibilities Ψk for each neuron over pixels (grey scale).
EM tends to collapse neuronal shapes, a problem averted by Sinkhorn-EM. Red
dots indicate true neural centers and red crosses indicate failures in the identi-
fication of individual components. C: Sinkhorn-EM consistently leads to better
segmentation performance as compared to EM and K-means++ competitors.
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8. APPLICATION TO CO-CLUSTERING IN SPATIAL
TRANSCRIPTOMICS

Finally, we study an extension of our methodology to the problem of model-
based co-clustering and demonstrate benefits on a high-dimensional genomics
dataset. Given a matrix Y with dimensions N and M , the co-clustering (or bi-
clustering) problem Govaert and Nadif (2013) is the one of how to simultaneously
cluster the rows and columns of X, as opposed to the usual setup where only the
rows of X (i.e., observations) are clustered. The co-clustering problem has a long
history in statistics (see, e.g., Good (1965); Hartigan (1972)) and has found rele-
vant applications in fields such as text analysis (Dhillon, 2001) and bioinformatics
(Cheng and Church, 2000; Tan and Witten, 2014). Here, we focus on the model-
based formulation (Bouveyron et al., 2019; Govaert and Nadif, 2013) based on
the maximization of a loss function (e.g., the log-likelihood) that depends on the
density of the observed data given model parameters. Model-based co-clustering
stands out as an example where we expect to obtain benefits from entropic OT
since likelihood-based approaches are known to be severely affected by bad local-
optima (Bouveyron et al., 2019).

The underlying probabilistic model here is the so-called latent block model.
For a co-clustering model with K clusters in the row dimension and G clusters
in the column dimension, let z ∈ RN×K be a binary matrix representing latent
assignments of rows in Y to a class k ∈ [K] (so that

∑
k zi,j = 1). Likewise, we

represent latent column assignments with a matrix w ∈ RM×G. Then, there are
K×G possible assignments for a particular Yi,j of Y . We assume that these entries
are conditionally independent knowing z and w so that for certain parametric
family of densities ϕ(·, θ) we express

P (Y |z, w, θ) =
∏

i,j,k,g

ϕ (Yi,j , θk,g)
zi,kwj,g .

If we denote the row and column mixture proportions πk = P (zi,k = 1) and
ρg = P (wj,g = 1) (these could also be treated as parameters) then the marginal
likelihood of Y writes as the following mixture

qθ(Y ) =
∑

(z,w)∈Z×W

p(z)p(w)f(Y |z, w, θ)

=
∑

(z,w)∈Z×W

∏
i,k

π
zi,k
k

∏
j,g

ρ
wj,g
g

∏
i,j,k,g

ϕ (Yi,j , θk,g)
zi,kwj,g . (28)

Evaluation of the above likelihood is intractable, a problem that carries forward
to the computation of the E step for the EM algorithm targeting (28): if the
above equation corresponded to a usual mixture model (e.g. making G = 1)
then zi would be uniquely associated to a Yi, and we would be able to express
the likelihood as a product over the sample. However, the complex simultaneous
dependence on z and w in (28) prevents us from achieving this sample represen-
tation for the likelihood above, so a sum with exponentially many terms needs
to be computed.

It is still possible to deal with intractability with approximate methods: here we
consider a Variational EM algorithm (VEM) (Bouveyron et al., 2019; Nadif and
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Govaert, 2008) based on a factored approximation for the joint conditional prob-
ability P (zi,kwj,g = 1|Y, θ) ≈ P (zi,k = 1|Y, θ)P (wj,g = 1|Y, θ). This algorithm,
detailed in the Appendix B.3, corresponds to the iterative alternate application
of the usual EM algorithm to cluster the rows and columns of Y until conver-
gence. The main drawback of this algorithm is sensitivity to initial values due
to pervasive bad-local optima. To deal with this issue, we implement Sinkhorn
VEM (SVEM), the algorithm that replaces each call of the EM algorithm with
SEM.

Figure 7: Comparison of three Co-clustering methods based on simulated data.
A: Setup for each experiment. The first inset contains data, each pixel is a noise-
corrupted version of the corresponding co-cluster (each sub-square, also shown
in the third subplot). Rows and columns of the data matrix are displayed in
increasing order in the co-cluster for visualization purposes. The second inset
is the same data matrix in the true shuffled order. The third inset shows the
(ordered) co-cluster means. The last three columns are co-clusters recovered by
each of the three methods. B: Scatterplot of true vs estimated co-cluster of means
for three methods over thousands of experimental repetitions. C: Dependence of
error on noise parameter σ2 and sample sizes N = M = 100, 500 (so that the
data matrix Y had dimension N ×N). Sinkhorn-VEM consistently produces the
most accurate co-clustering estimates.

8.1 Experiments on Synthetic Data

We compare VEM, Sinkhorn-VEM and the competitive spectral co-clustering
as implemented in Pedregosa et al. (2011) on simulated data sampled from the
simple Gaussian generative model:

Yi,j |(zi,k = 1, wj,g = 1, θ) ∼ N
(
θk,g, σ

2
)
.
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By performing thousands of experiments we studied differences between esti-
mated and actual θk,g for the three methods at different noise levels σ2 and num-
ber of co-clusters K2. Results are summarized in Fig. 7, Sinkhorn-VEM vastly
outperforms both spectral and VEM co-clustering. Details appear in the Ap-
pendix B.3.

8.2 Application to Spatial Transcriptomics

Spatial Transcriptomics is an umbrella for the group of technologies enabling
the transcriptomic (i.e., gene expression) profiling of samples (e.g., single-cell
RNA sequencing) with spatial resolution. It was named method of the year
(Marx, 2021) because of its promise to transform our understanding of biology
and pathology by providing a more comprehensive molecular characterization of
the living tissue (Bressan et al., 2023).

A typical spatial transcriptomics experiment is represented by a matrix Y ∈
RN×M containing gene expression levels of M genes across N locations or spots.
This type of structure motivates two intertwined research questions: i) whether
this high-dimensional expression data clusters coherently in regions in a way
that resembles the anatomy of the tissue, and ii) whether there are genes whose
expression level depends on space. As suggested by Sottosanti and Risso (2023),
it is possible to simultaneously address these two questions by bringing a co-
clustering perspective.

We compared the performance of three methods on one dataset from the hu-
man dorsolateral prefrontal cortex (DLPFC) from the Liebler Institute for Brain
Development (Maynard et al., 2021). Results are shown in Fig. 8. The clustering
of spots given by SVEM more faithfully represents the layer organization of the
tissue, even if no spatial information has been explicitly encoded in the model.
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Figure 8: Results for a Spatial Transcriptomic experiment. A Tissue sample of
DLPFC, with colored dots representing spatial locations where corresponding to
three layers (Layer 5, Layer 6 and White Matter) where gene expression vectors
were available. B. Comparison of clustering performance for the three methods,
averaged over a hundred of repetitions. Bars represent 95% confidence intervals.
C: example of a typical recovered solutions. SVEM most faithfully captures the
true underlying histological characterization, even if the model did not include
any spatial information.

9. DISCUSSION AND FUTURE DIRECTIONS

Entropic optimal transport endows us with a valuable methodology for model-
based clustering, often avoiding the pathologies that the log-likelihood would
otherwise suffer. Although our most specialized results pertain to the inference
of location parameters in GMMs with equal variances, we stress that the validity
of our methodology is more general in many aspects: first, the convergence of
Sinkhorn-EM to local optima is still guaranteed even in finite samples. Also, it
can be applied to other distributions besides the Gaussian. Third, it is possible to
optimize over parameters other than means, such as variances, and these variances
need not be equal. Fourth, we showed that just as with the log-likelihood, it is
also possible to optimize over weights α although this requires gradient steps that
are not understood under the Sinkhorn-EM algorithm.

These promising results motivate three lines of future work. First, our Theorem
2 describes a particular setup where we avoid a type of local optima. However,
a characterization of local optima structures for the entropic optimal transport
loss is still lacking. One promising approach for such characterization would be
extending the results of Chen and Xi (2020) to the unequal case weights.
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Second, although the main components of our methodology can be applied in
finite-sample and population regimes (Theorem 1 and Proposition 1 (a) and (c)),
our most involved theoretical results (Theorems 2, 4,3) are based on a study of
the population landscape of L. However, the fact that our successful empirical
results are based on samples (sometimes with modest size) motivates a more in-
depth analysis of the finite case. Regarding the EM algorithm, some thorough
finite-sample convergence analyses have appeared in the last few years (e.g. Bal-
akrishnan et al. (2017); Daskalakis et al. (2017b); Dwivedi et al. (2020)), and
they all are based on establishing a non-asymptotic uniform law of large num-
bers for controlling the difference between the empirical Fn and population F
iterates. Unfortunately, establishing such a law for SEM would require a non-
asymptotic convergence rate analysis for the empirical transportation plans πn

on a non-compact setup, which is unavailable today. Still, a flurry of recent results
in this direction (Groppe and Hundrieser, 2023; Masud et al., 2023; Pooladian
et al., 2023; Rigollet and Stromme, 2022) provide us with a novel set of tools for a
finite-sample analysis of SEM. Likewise, it may be possible to extend the stability
results on empirical risk minimization Mei et al. (2016) to provide finite-sample
statements on local optima for L.

The third line consists of identifying the most beneficial setups: we found that
SEM works the best whenever there is a sufficiently large number of clusters and
if the variance is large enough, but we did not observe an important effect of
dimension. However, in some high-dimensional setups, it is reasonable to expect
benefits from SEM: for example, if covariances need to be estimated and if n ≈ 2d
then EM is likely to become unstable since responsibilities can favor one of the
clusters, leaving few data points for estimation of a covariance matrix. As the
loss L is defined by enforcing a mass splitting, that problem would be entirely
avoided.

Our approach has two main limitations. First, although the inferential gains
are substantial, computation of the entropic loss L signifies a non-negligible extra
computational burden, so the use of our methodology should focus on cases where
the gains justify the extra cost; i.e. where we might not get the right optimum
even when trying from many different seeds. The second limitation is that L
may still have many bad local optima. We observed this problem when fitting
mixtures with very unequal weights; the existence of such bad local optima led
to an overall performance of the Sinkhorn-EM algorithm similar (but no worse)
to EM.
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APPENDIX A: OMITTED PROOFS

A.1 Proof of Proposition 1

We already showed (a), (b), and (c) in the main text. We note that the main
argument in (b), that the coupling π achieving the infimum in (6) is exactly the
joint QX,Y

θ∗ in (3) only works in the population case. In the finite-sample case, the
empirical measure Qn

θ∗ , i.e., the second prescribed marginal in the (6), doesn’t
have a density with respect to qθ∗ .

The proof of (d) is based on the explicit computation of the second derivative
of L with respect to θ. We will base heavily on the semi-dual formulation (8) that
we here write

L(θ) = max
ω∈RK

L̃(θ, ω),

where

L̃(θ, ω) = sup
ω∈RK

[
K∑
k=1

αkωk − E

(
log

(
K∑
k=1

αke
ωkqθk(y)

))]
(29)

Note that the supremum above is realized for many ω, as one may add an
arbitrary constant to any coordinate of ω without changing the right-hand side.
Therefore, we can assume ω(K) = 0 and (slightly abusing notation) that ω ∈
RK−1. Note that also clearly

L̃(θ, 0) = −E(log qθ(Y )). (30)

Recall that ω(θ) the one that achieves the maximum in (8). We will follow an
envelope-theorem-like argument: we have L(θ) = L̃(θ, ω(θ)), and based on this,
we may compute first and second derivatives using the chain rule (the notation
for the chain rules below is intentionally loose to avoid clutter)

∂L

∂θ
(θ) =

∂L̃

∂θ
(θ, ω(θ)) +

∂L̃

∂ω
(θ, ω(θ))

∂ω(θ)

∂θ
, (31)

where

∂2L

∂θ2
(θ) =

∂2L̃

∂θ2
(θ, ω(θ)) +

∂2L̃

∂ω∂θ
(θ, ω(θ))

∂ω(θ)

∂θ
+

(
∂2L̃

∂θ∂ω
(θ, ω(θ))

)⊤
∂ω(θ)

∂θ

+
∂ω(θ)

∂θ

⊤∂2L̃

∂ω2
(θ, ω(θ))

∂ω(θ)

∂θ
+

∂L̃

∂ω
(θ, ω(θ))

∂2ω(θ)

∂θ2
. (32)

But by optimality of ω(θ), for every θ we have

0 =
∂L̃

∂ω
(θ, ω(θ)) and 0 =

∂2L̃

∂θ∂ω
(θ, ω(θ)) +

∂2L̃

∂ω2
(θ, ω(θ))

∂ω(θ)

∂θ
. (33)

Therefore, by combining (32) and (33), and assuming that the second derivative
of L̃ w.r.t. ω is invertible we obtain

∂2L

∂θ2
(θ) =

∂2L̃

∂θ2
(θ, ω(θ))− ∂2L̃

∂ω∂θ
(θ, ω(θ))

(
∂2L̃

∂ω2
(θ, ω(θ))

)−1
∂2L̃

∂θ∂ω
(θ, ω(θ)). (34)
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We now show that this second derivative is negative definite (hence invertible):
note that

∂2L̃

∂ω2
(θ, ω) = −E

(
Diag(Ψ(Y, θ, α(ω))−Ψ(Y, θ, α(ω))Ψ(Y, θ, α(ω))⊤

)
, (35)

where Ψ(Y, θ, α) is the vector of responsibilities defined in (13) for k = 1, . . . ,K−
1, and where

α(ω)k =
αke

ω
k∑K

k=1 αke
ω
k

,

so that α(ω(θ)) = α(θ) as defined in (9). Now, define the (symmetric) matrix

I(θ, ω) as the extension of ∂2L̃
∂ω2 (θ, ω) to the entire range of indexes k = 1, . . .K,

i.e., I(θ, ω) is the right hand side in (35) viewed this time as a K×K matrix. By

definition this matrix coincides with ∂2L̃
∂ω2 (θ, ω) for k ≤ K − 1. Note that −I(θ, ω)

is the Laplacian matrix of a weighted graph since

K∑
k′=1,k′ ̸=k

I(θ, ω)k,k′ =

K∑
k′=1,k′ ̸=k

E (Ψk(Y, θ, α(θ))Ψk′(Y, θ, α(θ)))

=E

Ψk(Y, θ, α(θ))
K∑

k′=1,k′ ̸=k

Ψk′(Y, θ, α(θ))


=E (Ψk(Y, θ, α(θ)) (1−Ψk(Y, θ, α(θ))))

=− I(θ, ω)k,k.

Then, I is a negative weighted Laplacian matrix and

x⊤Ix =
1

2

K∑
k,k′

I(θ, ω)k,k′(xk − xk′)
2 ≤ 0.

The above expression is zero only if x is a constant vector since all entries of I(θ, ω)
are positive (they are expectations of a strictly positive variable with respect to

a Gaussian measure). Since ∂2L̃
∂w2 (θ, ω(θ)) is a submatrix of I, it is also negative

semidefinite. Now, suppose z⊤ ∂2L̃
∂ω2 (θ, ω)z = 0, then, if xk = zk for k ≤ K − 1 and

xK = 0 we have z⊤ ∂2L̃
∂ω2 (θ, ω)z = x⊤Ix = 0 and since x must be constant, z = 0.

Therefore, ∂2L̃
∂ω2 (θ

∗, 0) is negative definite and the proof is concluded.
We now evaluate at θ = θ∗ and ω = ω(θ∗). Since ω(θ∗) = 0 (the same argument

as the proof of (b)), we also have

∂2L̃

∂θ2
(θ∗, 0) = − ∂2

∂θ2
E(log qθ∗(Y )) =

∂2

∂θ2
ℓ(θ∗). (36)

Therefore,

∇2L(θ∗) = ∇2ℓ(θ∗)− ∂2L̃

∂ω∂θ
(θ, 0)

(
∂2L̃

∂ω2
(θ∗, 0)

)−1
∂2L̃

∂θ∗∂ω
(θ∗, 0). (37)

and we conclude by identifying

A(θ∗) = −∂2L̃

∂ω2
(θ∗, 0)−1, B(θ∗) =

∂2L̃

∂θ∗∂ω
(θ∗, 0)
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A.2 Proof of Corollary 2

Let θ be a stationary point of L(θ). By Proposition 1(c) it satisfies∇ℓ(θ, α(θ)) =
0. In the GMM of equation (17) this means that θ is a stationary point on a GMM
with tilted weights α(θ) instead of α. This statement is equivalent to saying

∂L̃

∂θ
(θ, ω(θ)) =

∂ℓ

∂θ
(θ, α(θ)).

Likewise, by taking derivatives in the definition of L̃ we can verify that

∂2L̃

∂θ2
(θ, ω(θ)) =

∂2ℓ

∂θ2
(θ, α(θ)),

and by (34) this means that

∇2L(θ) =
∂2ℓ

∂θ2
(θ, α(θ))− ∂2L̃

∂ω∂θ
(θ, ω(θ))

(
∂2L̃

∂ω2
(θ, ω(θ))

)−1
∂2L̃

∂θ∂ω
(θ, ω(θ)).

So, if θ is a local minimum for ℓ then ∂2ℓ
∂θ2

(θ, α(θ)) is positive definite. By the
same arguments as in the proof of Proposition (1)(d), the second term on the
right-hand side above is positive semidefinite. Therefore, in that case, ∇2L(θ) is
positive definite, i.e., θ is a local minimum for L.

A.3 Proof of Theorem 1

Proof. The proof borrows from the one for the EM algorithm introduced in
Wu (1983). For an arbitrary coupling π between the set measure αk in the set
[K] and the marginal distribution of Y ∼ Q∗ we define the function

m(θ, π) = −E

(
K∑
k=1

π(k|Y ) log (αkqθk(Y ))

)
.

By the definition of the M step (16b) after having computed πt+1 from the
previous E-step (16a) we have, since θt+1 minimizes the function m(·, πt+1):

m(θt+1, πt+1) ≤ m(θt, πt+1)

Here we are implicitly using the fact that since θt is fixed, there is one-to-one
correspondence between a coupling π̃ ∈ Π(Pθt , Q∗) (solving the E step) with a
coupling π ∈ Π(α,Q∗). We can add the relative entropy term H

(
πt+1|α⊗Q

)
to

obtain

m(θt+1, πt+1) +H
(
πt+1|α⊗Q∗

)
≤ m(θt, πt+1) +H

(
πt+1|α⊗Q∗

)
= −E

(
K∑
k=1

πt+1(k|Y ) log
(
αkqθtk

(Y )
))

+H
(
πt+1|α⊗Q∗

)
= H

(
πt+1|α⊗Q∗

)
= inf

π̃∈Π(Pθt ,Q∗)
H
(
π̃|QX,Y

θt

)
= L(θt).
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In the second-to-last equality, we used that πt+1 solves the previous E step and in
the last, we used the definition of L(θt). To conclude, we note that the left-hand

side above also expresses as H
(
π̃t+1|QX,Y

θt+1

)
but the coupling πt+1 may not be

optimal for the problem defining L(θt+1), so

L(θt+1) ≤ H
(
π̃t+1|QX,Y

θt+1

)
≤ m(θt+1, πt+1) +H

(
πt+1|α⊗Q∗

)
≤ L(θt).

We now show the inequality is strict if θt is not a stationary point. Note that
L(θ) = m(θ, πθ) where πθ minimizes m(θ, ·). By the chain rule and optimality of
πθ we have

∂L

∂θ
(θ) =

∂m

∂θ
(θ, πθ) +

∂m

∂π
(θ, πθ)

∂πθ
∂θ

=
∂m

∂θ
(θ, πθ). (38)

Since θt is not a stationary point for L the above implies that ∂m
∂θ (θ

t, πθt) ̸= 0.
Therefore, θt cannot globally minimize the (negative of) the function defining the
M-step m(·, πθt) = m(·, πt+1) implying that the M step leads to a strict decrease
of this function, i.e. m(θt+1, πt+1) < m(θt, πt+1). By the same argument as above
this implies L(θt+1) < L(θt).

A.4 Proof of Proposition 2

The proof is essentially the same as the one for Theorem 1 in Jin et al. (2016),
but a slightly more careful argument is needed for the two-dimensional com-
putations. The negative log-likelihood ℓ(·) here writes (θjk represents the j−th
coordinate of θk):

ℓ(θ) = −E

(
log

(
3∑

k=1

e−
(x−θ1k)2

2 e−
(y−θ2k)2

2

))
+ log (6π) .

Define θ̃1 = (0, 0) and θ̃2 = θ̃3 = (R, 0). Clearly, θ = (θ̃1, θ̃2, θ̃3) is in the interior
of Rε for every ε > 0. Let’s compute the likelihood of this configuration when
R→∞:

m0 := lim
R→∞

ℓ(θ̃) = 1 +
D2

3
+ log (6π)− log 2

3
.

For a fixed vector of second coordinates θ̄2 we consider the regions in R6

R1(θ̄
2) := {θ : θ11 =

R

3
, θ12 ≥

2R

3
, θ13 ≥

2R

3
, θ2 = θ̄2},

R2(θ̄
2) := {θ : θ11 ≤

R

3
, θ12 =

2R

3
, θ13 ≥

2R

3
, θ2 = θ̄2},

R3(θ̄
2) := {θ : θ11 ≤

R

3
, θ12 ≥

2R

3
, θ13 =

2R

3
, θ2 = θ̄2},

It is easy to see that

lim
R→∞

inf
θ∈R1(θ̄2)

ℓ(θ) =∞,

lim
R→∞

inf
θ∈R2(θ̄2)

ℓ(θ) = 1 +
1

6

(
(D − θ̄21)

2 + (D + θ̄21)
2
)
+

θ̄23
6

+ log (6π) ,

lim
R→∞

inf
θ∈R3(θ̄2)

ℓ(θ) = 1 +
1

6

(
(D − θ̄21)

2 + (D + θ̄21)
2
)
+

θ̄22
6

+ log (6π) .
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The first line follows from Jensen’s inequality and basic moment relationships for
a Gaussian distribution. The second and third limits follow from the fact that
asymptotically the infimum is attained at θ11 = 0, θ12 = 2R/3, θ13 = R, θ2 = θ̄ for
R2(θ̄

2) and at θ11 = 0, θ12 = R, θ13 = 2R/3, θ2 = θ̄ for R3(θ̄
2).

Now, for ε > 0 define Rε
k := ∪||θ̄||<εRk(θ̄) for k = 1, 2, 3 so that Rε

k are the three
5-dimensional faces of Rε. Call mε

k = limR→∞ infθ∈Rε
k
ℓ(θ). Since the above limits

are simultaneously minimized with respect to θ̄ if θ̄2 = 0 we have that

mε
1 =∞,mε

2 = mε
3 = 1 +

L

3
+ log (6π) .

Therefore, m0 < min{mε
1,m

ε
2,m

ε
3} so, as in Jin et al. (2016) we conclude the

existence of a local minimum θε in the interior of Rε, whenever R = R(ε) is
sufficiently large. By the same continuity argument as in Jin et al. (2016), this
minimum has a smaller likelihood than the global maximizer θ∗.

A.5 Proof of Theorem 2

Call

Ψk(Y, θ) =
αk(θ)e

− 1
2σ2 ||Y−θk||2∑K

k=1 αk(θ)e
− 1

2σ2 ||Y−θk||2
,

where α(θ) is the vector of weights arising in the semi-dual optimal transport
formulation. By definition of α(θ), E(Ψk(Y, θ)) =

1
K . The first-order optimality

conditions for θ read

E((Y − θk)Ψk(Y, θ, α(θ)) = 0,

or equivalently,

E(YΨk(Y, θ, α(θ))) =
1

K
θk. (39)

We now show that this implies that the sum of the true weights must equal the
sum of the model weights:

K∑
k=1

θ∗k =
K∑
k=1

θk. (40)

Indeed, since
∑K

k=1Ψk(Y, θ, α(θ)) = 1, by adding over all components in (39) we
obtain

1

K

K∑
k=1

θ∗k = E(Y ) = E

(
Y

(
K∑
k=1

Ψk(Y, θ, α(θ))

))
=

1

K

K∑
k=1

θk.

First-order optimality also implies a lower bound for averages of groups of θk.
Indeed, let S ⊆ [K] be an arbitrary set of indexes. Equation (39) implies that

1

K

∑
k∈S

θk = E

(
Y

(∑
k∈S

Ψk(Y, θ, α(θ))

))
. (41)

The right-hand side of (41) can be written as E(Y f(Y )) for some f(·) ∈ [0, 1].
Although the above relations are multi-dimensional, hereafter, we only need to
look at the first coordinate, which w.l.o.g. is our direction of interest, since the
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stationary points of LR on a rotated Gaussian Mixture Model are the rotations
of the stationary points of L for the original Gaussian Mixture Model. Likewise,
we can assume that the rightmost component of G1 equals 0 so that G1 is the
group of negative components, θ∗k ≤ 0 for all k ∈ G1, and that θ∗k ≥ 0 for
k ∈ G2. If 0 ≤ ϕ(·) ≤ 1√

2π
and 0 ≤ Φ(·) ≤ 1 are the standard Gaussian pdf. and

cdf., respectively, and if Ek denotes expectation under the k-th component (i.e.
N (θ∗k, σ

2)), we have:

E(Y f(Y )) ≥ E(Y 1Y≤0) (42)

=
1

K

K∑
k=1

Ek(Y 1Y≤0)

=
1

K

(
K∑
k=1

θ∗kΦ

(
−
θ∗k
σ

)
− σϕ

(
θ∗k
σ

))

≥ 1

K

(
K∑
k=1

θ∗kΦ

(
−
θ∗k
σ

)
− σ√

2π

)

≥ 1

K

∑
i∈G1

θ∗k −
σ√
2π

,

where in the third line, we used simple properties of the truncated Gaussian
distribution, and in the fourth, we have used that 0 ≤ Φ(·) ≤ 1 and that θ∗k ≥ 0
in G2. By combining (41) and (42) we obtain

1

K

∑
k∈S

θk ≥
1

K

∑
k∈G1

θ∗k −
σ√
2π

. (43)

To conclude, we will use the above relations to obtain a lower bound on δ.
Take S = Oc, the complement of the group of fitted components in O is δ-close
to true components in G2. We have

1

K

∑
k∈O

θk +
1

K

∑
k∈Oc

θk ≥
1

K

∑
k∈O

θk +
1

K

∑
k∈G1

θ∗k −
σ√
2π

.

And by (40):

1

K

∑
k∈G1

θ∗k +
1

K

∑
k∈G2

θ∗k ≥
1

K

∑
k∈O

θk +
1

K

∑
k∈G1

θ∗k −
σ√
2π

,

so that
1

K

∑
k∈O

θk −
σ√
2π
≤ 1

K

∑
k∈G2

θ∗k.

Now, by definition, each true component θ∗k in G2 is δ close to at least one fitted
component θk in O. Conversely, each fitted component in O is close to some θ∗ in
G2. More precisely, if for each θk in O we call θ̃∗k the true component in G2 that
is δ close to θk, we will exhaust G2 with the θ̃∗k by enumerating O, and there will
be (k̃− k2) duplicates in G2 that we call G̃2. With this observation, we can write

1

K

∑
k∈O

(θ̃∗k − θk) +
σ√
2π
≥ 1

K

∑
k∈O

θ̃∗k −
1

K

∑
k∈G2

θ∗k.
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Using the fact that fitted components are close to true components in G2

δk̃ ≥
∑
k∈O

(θ̃∗k − θk) ≥
∑
k∈O

θ̃∗k −
∑
k∈G2

θ∗k −
Kσ√
2π

.

Abusing notation, since we can express the difference of the sums in the right-
hand side above in terms of the duplicates θ̃∗k in G̃2:

δk̃ ≥
∑
k∈O

(θ̃∗k − θk) ≥
∑
k∈G̃2

θ̃∗k −
Kσ√
2π

.

Now, since each of the duplicates is a member of G2 we have θ̃∗k ≥ θ∗l where θ∗l
is the leftmost component of G2, which is at least at a distance ∆ above θ∗r = 0,
the rightmost component in G1. Therefore,

δk̃ ≥ (k̃ − k2)∆−
Kσ√
2π

,

and the proof is concluded.

A.6 Proof of Corollary 1

Define new rotated axis as described in Fig. 2B with the origin at θ∗2. The new
coordinates are given by

θ∗,new1,x = − 2D2

√
R2 +D2

, θ∗,new2,x = 0, θ∗,new3,x =
√
R2 +D2 − 2D2

√
R2 +D2

.

We split these components in the two leftmost θ∗,new1 , θ∗,new2 and the rightmost
θ∗,new3 . The minimum separation between groups is given by

∆(R) = θ∗,new3,x −θ∗,new2,x =
√

R2 +D2− 2D2

√
R2 +D2

= D

√R2

D2
+ 1− 2√

R2

D2 + 1

 .

Taking k̃ = 2, k2 = 1, α = 0.45,K = 3 and σ2 = 1 we obtain, by Theorem 2, that
for

∆(R) ≥ 3

2π((1− 0.45)× 2− 1)
≥ 30

2π
≥ 5 (44)

we can rule out stationary points for L with δ ≥ 0.45∆(R). Note also that since

x− 2

x
≥ 4

5
x

whenever x2 ≥ 10 we have that

∆(R) ≥ 4

5
D

√
R2

D2
+ 1

holds if R2 ≥ 9D2. Therefore,

δ ≥ 9

25
D

√
R2

D2
+ 1
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for a stationary point if R2 ≥ 9D2 and if (44) holds. To ensure (44) we can

additionally impose that D ≥ 5
√
5

4
√
2
> 2. We must now go back to the original

coordinates: this δ breaks down into δx and δy in the original coordinates, with

δx =
R√

R2 +D2
δ ≥ 9

25

R√
R2 +D2

D

√
R2

D2
+ 1 ≥ 9

25
R >

R

3

for a stationary point of L. In contrast, Proposition 2 anticipates a bad local
optima for the log-likelihood with δx ≤ R/3 if R is sufficiently large.

A.7 Proof of Theorems 3 and 4

The proof of Theorem 3 relies on an analysis of the functions L(·, α∗) and
ℓ(·, α∗) and their derivatives. Let’s denote those functions as Lα∗ ℓα∗ to simplify
notation Fig. A.1 depicts the main properties of the functions that will be used
in the proofs. The first row shows Lα∗(θ) ≥ ℓα∗(θ), which is the conclusion of
Proposition 1. The second through fourth rows illustrate the behavior of the
derivatives L′ and ℓ′. We show in Proposition 3 that L′

α∗(θ) ≥ ℓ′α∗(θ) for all
θ < 0, which is clearly visible in the second and fourth row. In the third row,
we plot the absolute values of the derivatives, with stationary points visible as
cusps. In the last row, we plot an important auxiliary function described in more
detail below.

As mentioned in the main text, we assume α∗ > 0.5 by a simple symmetry
argument. The fourth column in Fig. A.1 illustrates this symmetry. Additionally,
we exclude the α∗ = 0.5 from our analyses, as in this case, the entropic OT loss
coincides with the negative log-likelihood (last column of Fig. A.1) and SEM and
EM define the same algorithm.

We make several additional definitions for the proof of Theorem 4. Let ω = ω(θ)
be the semi-dual weight defined in (8). The first-order optimality conditions for
ω reads

α∗ =

∫
eω1α∗e−(θ−y)2/2

eω1α∗e−(θ−y)2/2 + eω2(1− α∗)e−(θ+y)2/2
qθ∗(y)dy. (45)

The above condition can be expressed in terms of the tilted α(θ) introduced in
(9): α(θ) the unique number in [0, 1] satisfying

α∗ = G(θ, α(θ)), (46)

with G(θ, α) defined as

G(θ, α) :=

∫
αe−(θ−y)2/2

αe−(θ−y)2/2 + (1− α)e−(θ+y)2/2
qθ∗(y)dy (47)

=

∫
αeθy

αeθy + (1− α)e−θy
qθ∗(y)dy (48)

= E (Ψ1(Y, θ, α(θ)) . (49)

We plot the tilting α(θ∗) in the last row of Fig. A.1.
To analyze the behavior of Sinkhorn-EM and vanilla EM, we also introduce

the auxiliary function F (θ, α) defined by

F (θ, α) :=

∫
IR
y
αeθy − (1− α)e−θy

αeθy + (1− α)e−θy
qθ∗(y)dy . (50)
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With this notation, the updates of SEM satisfy

θt+1
SEM = F (θtSEM , α(θtSEM )) ,

where α(θ) is defined in (46). On the other hand, the updates of EM satisfy

θt+1
EM = F (θtEM , α∗).

Proof of Theorem 3. We assume, as above, that α∗ > 0.5. First, we show
that L(·, α∗) never has spurious stationary points on (0,∞). Suppose there was
such θ′ > 0. Then, the SEM algorithm initialized at that value would stay remain
there, by virtue of Theorem 1. Since Theorem 4 guarantees that SEM converges
to θ∗ for any positive initialization, this implies θ′ = θ∗.

We now show that if Lα∗ has a spurious stationary point, then so does ℓα∗ .
Suppose that Lα∗ has a stationary point θ ∈ (−∞, 0]. In Proposition 3 we show
that if θ ≤ 0, then L′

α∗(θ) > ℓ′α∗(θ). Therefore, if θ is stationary point of Lα∗ , then
ℓ′α∗(θ) < 0. Since ℓα∗ is continuously differentiable and ℓ′α∗(0) = (2α∗2 − 1)2 > 0,
there must be a θ′ ∈ (θ, 0) such that ℓ′α∗(θ′) = 0. Therefore ℓα∗ also has a spurious
stationary point.

Finally, to show that the set of α∗ for which ℓα∗ has a spurious stationary point
is strictly larger than the corresponding set for Lα∗ , we note that the arguments
in the proof of Theorem 1 and Lemma 4 in (Xu et al., 2018) establish that there
is δ > 0 such that if α∗ = 0.5 + δ then ℓα∗ has a single spurious stationary
point on (−∞, 0), and if α∗ > 0.5 + δ, then ℓα∗ does not have any spurious
stationary points. Sine ℓ′α∗(θ) is a continuous function of α∗, this implies that
ℓ′0.5+δ is nonnegative for all θ < 0. Since L′

0.5+δ(θ) > ℓ′0.5+δ(θ) for all θ < 0, we
obtain that L′

0.5+δ has no spurious stationary points.
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.

Figure A.1: Behavior of L, ℓ and their derivatives for different values of α∗. Black
lines correspond to the reference α = 0.5 (also in the last column). First row
entropic OT (L, blue) and negative log likelihood ℓ (red). Second row derivatives
of L and ℓ. Third row difference between the derivatives L and ℓ. Fourth row
absolute value of the derivatives. Fifth row optimal α(θ) from the semi-dual
entropic OT formulation.

Proof of Theorem 4, equation (25). Let us fix α∗ > 0.5. We first recall
the results of (Daskalakis et al., 2017a, Theorem 1), where the bound (25) is
stated for the EM algorithm in the symmetric mixture (α∗ = 0.5). Let us denote
θtEM0

for the iterates of EM on the symmetric mixture, initialized at θ0 > 0. We
write θtSEM for the iterates of SEM on the asymmetric mixture. We will show
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that, for all t ≥ 0, θtSEM and θtEM0
satisfy

θ∗ ≤ θtSEM ≤ θtEM0
if θ0 ≥ θ∗, (51)

θ∗ ≥ θtSEM ≥ θtEM0
if 0 < θ0 ≤ θ∗. (52)

This will then prove the claim since it implies

|θtSEM − θ∗| ≤ |θtEM0
− θ∗| ≤ ρt|θ0 − θ∗|.

It remains to prove (51) and (52). Recall the function F defined in (50). We
first show that

F (θ, α(θ))


≤ θ∗, 0 < θ < θ∗

= θ∗, θ = θ∗

≥ θ∗, θ > θ∗
. (53)

This implies the first inequalities of (51) and (52). To show (53), notice first that
clearly F (θ∗, α(θ∗)) = F (θ∗, α∗) = θ∗. Therefore, it is enough to establish that
θ 7→ F (θ, α(θ)) is non-decreasing. Let us define f(θ) = F (θ, α(θ)). We then have

f ′(θ) =
∂F

∂θ
(θ, α(θ)) +

∂F

∂α
(θ, α(θ))α′(θ), (54)

and

∂F

∂θ
(θ, α) = 4α(1− α)

∫
y2

qθ∗(y)

(αeθy + (1− α)e−θy)
2dy ≥ 0, (55)

∂F

∂α
(θ, α) = 2

∫
y

qθ∗(y)

(αeθy + (1− α)e−θy)
2dy. (56)

Additionally, by taking derivatives with respect to θ in (46) we have

α′(θ) = −∂G

∂α
(θ, α(θ))−1∂G

∂θ
(θ, α(θ)), (57)

and likewise,

∂G

∂θ
(θ, α) = 2α(1− α)

∫
y

qθ∗(y)

(αeθy + (1− α)e−θy)
2dy, (58)

∂G

∂α
(θ, α) =

∫
qθ∗(y)

(αeθy + (1− α)e−θy)
2dy > 0. (59)

The conclusion follows by replacing (55),(56),(57),(58) and (59) in (54) and in-
voking the Cauchy-Schwarz inequality.

We now show the second inequalities in (51) and (52). To this end, we will first
show

F (θ, α(θ))

{
≥ F (θ, 0.5) 0 ≤ θ ≤ θ∗,

≤ F (θ, 0.5) θ ≥ θ∗.
(60)

Let ϕ denote the density of a standard Gaussian random variable. We can write

F (θ, α)− F (θ, 0.5)

2α− 1
=

∫
y ·

(
α∗eθ

∗y + (1− α∗)e−θ∗y
)

(eθy + e−θy) (αeθy + (1− α)e−θy)
ϕ(y)e−θ∗2/2dy.

=:

∫
y · ρθ,α(y)dy .
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It is straightforward to verify that for α, α∗ ≥ 1/2, if ≤ α ≤ α∗ and θ ≤ θ∗, then

ρθ,α(y) ≥ ρθ,α(−y) ∀y ≥ 0.

On the other hand, if α ≥ α∗ and θ ≥ θ∗, then

ρθ,α(y) ≤ ρθ,α(−y) ∀y ≥ 0.

In particular, this yields that for α, α∗ ≥ 1/2,

F (θ, α)− F (θ, 0.5)

2α− 1

{
≥ 0 if α ≤ α∗ and 0 ≤ θ ≤ θ∗

≤ 0 if α ≥ α∗ and θ ≥ θ∗.

To complete the proof of (60), we used the facts, proved in Lemma 1 that α(θ) ≥
1/2 and that α(θ) ≤ α∗ if 0 ≤ θ ≤ θ∗ and α(θ) ≥ θ∗ if θ ≥ θ∗.

Now, we use the fact that the iterates θtEM0
satisfy (see for example Daskalakis

et al. (2017a))
θt+1
EM0

= F (θtEM0
, 0.5) . (61)

With this, we can now show the second two inequalities in (51) and (52). We
proceed by induction. Let’s first suppose θ0 ≥ θ∗. Then indeed for t = 0, we have
θ∗ ≤ θtSEM ≤ θtEM0

. If this relation holds for some t, then we have

θt+1
SEM = F (θtSEM , α(θtSEM ))

≤ F (θtSEM , 0.5)

≤ F (θtEM0
, 0.5)

= θt+1
EM0

,

where the first inequality uses (60), the second uses the fact that F is an increasing
function in its first coordinate (55), and the final equality is (61). The proof of
the second inequality in (52) is completely analogous.

Proof of Theorem (4), equation (26). Suppose first θ0 > θ∗. In this case,
it suffices to show that F (θ, α) ≤ F (θ, α∗) for all α ≥ α∗ for all θ ≥ θ∗. Indeed,
we can then appeal to precisely the same argument as in the proof of Theo-
rem (4), equation (25), to compare the iterates of SEM (which satisfy θt+1

SEM =
F (θtSEM , α(θtSEM ))) to those of EM (which satisfy θt+1

SEM = F (θtSEM , α∗).)
We have that

F (θ, α)− F (θ, α∗)

2(α− α∗)
=

∫
y

qθ∗(y)

(αeθy + (1− α)e−θy) (α∗eθy + (1− α∗)e−θy)
dy

=

∫
y≥0

fθ(y)dy, (62)

where

fθ(y) := y
gθ(y)ϕ(y)e

−θ∗2/2

(αeθy + (1− α)e−θy) (α∗eθy + (1− α∗)e−θy) (αe−θy + (1− α)eθy) (α∗e−θy + (1− α∗)eθy)
,
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and

gθ(y) :=
(
αe−θy + (1− α)eθy

)(
α∗e−θy + (1− α∗)eθy

)
qθ∗(y)

−
(
αeθy + (1− α)e−θy

)(
α∗eθy + (1− α∗)e−θy

)
qθ∗(−y)

=L
(
ey(2θ−θ∗) − e−y(2θ−θ∗)

)
+M

(
eyθ

∗ − e−yθ∗
)
+N

(
ey(2θ+θ∗) − e−y(2θ+θ∗)

)
with

L = (1− α∗)2(1− α)− αα∗2,

M = (2α∗ − 1)(α+ α∗ − 2αα∗),

N = α∗(1− α∗)(1− 2α).

Notice that for y ≥ 0 and θ > θ∗ the three above differences of exponentials
are positive, and that ey(2θ−θ∗) − e−y(2θ−θ∗) ≥ eyθ

∗ − e−yθ∗ . Moreover, if 1/2 ≤
α∗, α < 1, then N < 0 and M > 0, and if furthermore α ≥ α∗, then also L < 0.
Therefore,

gθ(y) < (L+M)
(
eyθ

∗ − e−yθ∗
)

= (1− 2α)(3α∗2 − 3α∗ + 1)
(
eyθ

∗ − e−yθ∗
)
≤ 0. (63)

This proves that when α ≥ α∗ ≥ 1/2, we have F (θ, α) ≥ F (θ, α∗), as claimed.
Now let’s show that there exists a θfast < θ∗ such that if θ ∈ [θfast, θ

∗], then
F (θ, α) ≥ F (θ, α∗) for all α∗ ≥ α > 1/2. (As above, this will suffice to prove
the desired claim by applying the argument in the proof of Theorem (4), equa-
tion (25).) It suffice to show that for θ ∈ [θfast, θ

∗], we have

gθ(y) ≤ 0 ∀y ≥ 0 .

First, we note that, sinceN < 0, for any θ > θ∗/2, the termN
(
ey(2θ+θ∗) − e−y(2θ+θ∗)

)
is always eventually dominant, so there exists a y∗ such that

gθ(y) < 0 ∀θ > θ∗/2, y > y∗ .

It therefore suffices to focus on the compact interval [0, y∗].
To proceed, let us consider what happens when θ = θ∗. Carrying out the same

argument as above, we obtain that as long as α > 1/2, we have

gθ∗(y) ≤ (L+M)(eyθ
∗ − e−yθ∗) ∀y ≥ 0,

where L+M is negative.
Let us examine the derivative ∂

∂θgθ(y):

∂

∂θ
gθ(y) = 2yL(ey(2θ−θ∗) + e−y(2θ−θ∗)) + 2yN(ey(2θ+θ∗) + e−y(2θ+θ∗)) .

We conclude that if θ′ < θ∗ is such that

(θ∗ − θ′)(4|L|yeyθ∗ + 4|N |ye3yθ∗) ≤ −(L+M)(eyθ
∗ − e−yθ∗) ,
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then ∣∣∣∣ ∂∂θgθ(y)
∣∣∣∣ · (θ∗ − θ′) ≤ −gθ∗(y) ,

which yields

gθ′(y) = gθ∗(y)−
∫ θ∗

θ′

∂

∂θ
gθ(y)dθ ≤ gθ∗(y) +

∣∣∣∣ ∂∂θgθ(y)
∣∣∣∣ · (θ∗ − θ′) ≤ 0 .

Hence, if we define

δ = inf
y∈[0,y∗]

−(L+M)(eyθ
∗ − e−yθ∗)

4|L|yeyθ∗ + 4|N |ye3yθ∗
,

then as long as this quantity is positive, we can take θfast = θ∗− δ. But positivity
follows immediately from the fact that this function is continuous and positive
on (0, y∗] and has a positive limit as y →∞.

A.8 Intermediate results for Theorem 3 and 4

Proposition 3. For the asymmetric mixture of two Gaussians (24) we have
that for all θ < 0

L′
α∗(θ) > ℓ′α∗(θ) (64)

Proof. Let us write ℓ(θ, α) = −E log qθ,α(Y ) the the expected negative log-
likelihood function in the overparametrized model

qθ,α = αN (y; θ, 1) + (1− α)N (y;−θ, 1) .

We then have

∂

∂θ
ℓ(θ, α) =

∫
y

[
αe−(θ−y)2/2 − (1− α)e−(θ+y)2/2

αe−(θ−y)2/2 + (1− α)e−(θ+y)2/2

]
qθ∗,α∗,(y)dy−θ = F (θ, α)−θ ,

(65)
where F is defined in (50).

We have ℓ′α∗(θ) = ∂
∂θ ℓ(θ, α

∗) = F (θ, α∗)−θ. Likewise, if we recall that Lα∗(θ) =

L̃(θ, ω(θ)) where ω(θ) solves (8), then we have

L′
α∗(θ) =

∂L̃

∂θ
(θ, ω(θ)) =

∂

∂θ
ℓ(θ, α(θ)) = F (θ, α(θ))− θ. (66)

Then, to establish (64) it suffices to show that for each θ < 0,

F (θ, α∗) < F (θ, α(θ)) .

Moreover, since Lemma 1 shows that α(θ) > α∗ > 0.5, it suffices to show that
F (θ, α) is a strictly increasing function of α for α ≥ 0.5 and an arbitrary θ ≤ 0.

Recall (56), which shows

∂F

∂α
(θ, α) = 2

∫
y

qθ∗(y)

(αeθy + (1− α)e−θy)
2dy .
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Since α∗ > 0.5, we have qθ∗(y) > qθ∗(−y) for all y > 0. Furthermore, for θ ≤ 0
and α ≥ 0.5, it holds

1

(αeθy + (1− α)e−θy)
2 ≥

1

(αe−θy + (1− α)eθy)
2 ∀y > 0 .

Therefore

∂F

∂α
(θ, α) = 2

∫
y

qθ∗(y)

(αeθy + (1− α)e−θy)
2dy

= 2

∫
y>0

y
qθ∗(y)

(αeθy + (1− α)e−θy)
2dy + 2

∫
y>0

(−y) qθ∗(−y)
(αe−θy + (1− α)eθy)

2dy > 0 ,

which proves the claim.

Lemma 1. Suppose α∗ > 1/2

(a) for any θ, α(θ) > 1/2.
(b) α(·) is decreasing (increasing) whenever θ < 0 (θ > θ∗) and in either case

α(θ) ≥ α∗. Moreover, lim∥θ∥→∞ α(θ) = 1.
(c) α(θ) ≤ α∗ whenever 0 ≤ θ ≤ θ∗.

Proof. We begin by recalling the function G, defined in (47). By (59), this
function is a strictly increasing function of α and α(θ) is the unique number in
[0, 1] satisfying

G(θ, α(θ)) = α∗,

and α(θ) > p if and only if G(θ, p) < α∗. Let us first prove (a). It suffices to show
that G(θ, 1/2) < α∗. Write ϕθ∗ for the density of N (θ∗, 1). We then have

G(θ, 1/2) =

∫
eθy

eθy + e−θy
qθ∗(y)dy =

∫
α∗eθy + (1− α∗)e−θy

eθy + e−θy
ϕθ∗(y)dy .

But if α∗ > 1/2, then α∗eθy+(1−α∗)e−θy

eθy+e−θy < α∗ for all θ and y. Since ϕθ∗(y) is a
probability density, we obtain that G(θ, 1/2) < α∗, as desired.

It is straightforward to see that α(0) = α(θ∗) = α∗. To show monotonicity, we
rely on the formula (57) for α′(θ). If θ < 0, the conclusion is a direct consequence
of (57) and Lemma 2(b). If θ > θ∗, the conclusion follows similarly from Lemma
2(c), but the argument is more delicate, as applying this lemma requires that
α(θ) ≥ α∗. Suppose that there exists a θ > θ∗ for which α′(θ) < 0. Let us
denote by θ0 the infimum over all such θ. By (57), ∂G

∂θ (θ0, α(θ0)) must be therefore
nonnegative, which by Lemma 2(c) implies that α(θ0) < α∗ = α(θ∗). But since
α′(θ) ≥ 0 for all θ ∈ [θ∗, θ0), this is a contradiction. Therefore α′(θ) ≥ 0 for all
θ ≥ θ∗, as claimed.

Finally, the limit statement follows from the dominated convergence theorem.
Since α∗ = G(θ, α(θ)) for all θ ∈ R, it holds

α∗ = lim
∥θ∥→∞

G(θ, α(θ))

=

∫
lim

∥θ∥→∞

α(θ)eθy

α(θ)eθy + (1− α(θ))e−θy
qθ∗(y)dy ,
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where the second inequality is by the dominated convergence theorem. Since
α(·) is monotonic outside the interval [0, θ∗], as α(θ) has a limit as θ → +∞ or
θ → −∞. Let us first consider θ → ∞ (the negative case is exactly analogous).
If this limit is different from 1, then

lim
θ→∞

α(θ)eθy

α(θ)eθy + (1− α(θ))e−θy
=

{
1 y > 0

0 y < 0
.

But this is a contradiction, since α∗ ̸=
∫
y≥0 qθ∗(y)dy if α∗ > 1/2. This proves the

claim.
Let’s now prove (c). Notice it suffices to show that (i) α′(0) < 0 and (ii) the

only solutions to the equation α(θ) = α∗ are θ = 0 and θ = θ∗. The first claim is
a simple consequence of (57) and Lemma 2(b).

The second claim is a bit more involved. Suppose α(θ) = α∗. By simple algebra
(as in the proof of theorem 4), it can be shown that the following relation holds∫

y≥0

2α∗(1− α∗)(2α∗ − 1)e−θ∗2
(
e2θy − 1

) (
e2θ

∗y − e2θy
)

e(θ∗+2θ)y (α∗eθy + (1− α∗)e−θy) ((1− α∗)eθy + α∗e−θy)
ϕ(y)dy = 0.

The integral above can only be zero if θ = 0 or θ = θ∗; otherwise, the integrand is
either positive or negative for each value of y ≥ 0. This concludes the proof.

Lemma 2. Suppose α∗ > 0.5. Let

Gθ(θ, α) :=
1

2α(1− α)

∂G

∂θ
(θ, α) =

∫
y

(αeθy + (1− α)e−θy)
2 qθ∗(y)dy.

Then,

(a) For each θ ≥ 0, Gθ is a decreasing as function of α. Conversely, for each
θ ≤ 0, Gθ is an increasing function of α.

(b) Gθ(θ, α) ≥ 0 if θ ≤ 0 and α > 1/2.
(c) Gθ(θ, α) ≤ 0 if θ ≥ θ∗ and α ≥ α∗.

Proof. To see (a), notice that

∂Gθ

∂α
(θ, α) = −2

∫
y
(
eθy − e−θy

)
(αeyθ + (1− α)e−yθ)

3 qα∗,θ∗(y)dy.

The integrand is either positive (if θ > 0) or negative (if θ < 0) for each y, and
the conclusion follows.

To prove (b) and (c), we note that (56) implies that

Gθ(θ, α) =
1

2

∂F

∂α
(θ, α) .

But we have already shown in the proof of Proposition 3 that ∂F
∂α (θ, α) > 0 for

all θ ≤ 0 and α > 1/2. This proves (b).
Likewise, the proof of Theorem (4), equation (26), shows that F (θ, α) ≤

F (θ, α∗) for all θ ≥ θ∗ and α ≥ α∗. This proves that Gθ(θ, α
∗) = 1

2
∂F
∂α (θ, α

∗) ≤ 0.
To conclude, we appeal to part (a): since θ ≥ θ∗ > 0, Gθ is decreasing as a
function of α, and hence, Gθ(θ, α) ≤ Gθ(θ, α

∗) ≤ 0.
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APPENDIX B: EXPERIMENTAL DETAILS

B.1 Synthetic experiment details

For the four synthetic data experiments of 6.1 (i),(ii),(iii), and (iv), we
considered several possible dimension sizes d = 2, 5, 10, 20 variances σ2 =
0.001, 0.005, 0.01, 0.05, 0.1, 0.2, 0.5 and component numbers K = 10, 20, 30, 40.
(Boerner et al., 2023; Brown et al., 2021). Each true mean θk was sampled from
a uniform U(−1, 1) distribution. In cases where variances were not spherical, di-
agonal entries were sampled from a U(0.5σ2, 1.5σ2) distribution (and i.i.d across
different clusters). For each run of EM and Sinkhorn-EM, we performed at most
100 iterations with a termination criterion of ε = 1e−3 change in the overall L1

differences between consecutive parameter values (adding mean and variance dif-
ferences). For each Sinkhorn-EM iteration, we performed at most 1000 iterations
with a termination criterion of ε = 1e−3 for L1 differences between consecutive
entropic optimal transport potentials. For k-means we used the scikit-learn im-
plementation with K-means++ initialization. This initialization was also used on
the same seeds for Sinkhorn-EM and EM. Figs. B.2, B.3 and B.4 supplement
the results of the main text regarding experiment (i). In Fig. B.2 we compare
the performance of three algorithms of each individual experiment, both at the
level of individual seed or at the level of best seed. Both EM and Sinkhorn-EM
outperform k-means and Sinkhorn-EM outperforms EM. In Figs. B.3 we show
performance of each algorithm as a function of d, σ2 and K for the two sample
sizes we considered, n = 500 and n = 1000. These figures point to the same
pattern described in the main text. Figs. B.5, B.6 and B.7 are analogs of B.2 in
the main text for experiments (ii) (known unequal diagonal variances), (iii) (un-
known spherical variance) and (iv) (unknown unequal variances). Results align
with the same pattern favoring Sinkhorn-EM.

For the unknown weights experiments of Section 6.2 we considered param-
eters d = 2, K = 10, 20, 30, 40, n = 1000, σ2 = 0.005, 0.001, 0.01 and γ =
1, 10, 20, 50, 100, 1000 and all other setups as in the experiments in Section 6.1.
We jointly optimized over weights α and means θ by coordinate descent: for opti-
mization over θ we performed Sinkhorn-EM and for optimization over α we used
the mirror descent method described in 3.2, with η = 1. We iterated these two
sub-routines until convergence. For the model selection experiments of Section
6.3 we considered several choices of d and K as shown in Fig. B.8, which gives a
more detailed account than Fig. 5 in the main text.
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Figure B.2: Performance comparison of three methods in experiment (i) of Section
6.1. A Error scatterplots comparing the performance of k-means with EM or
Sinkhorn-EM (colors). B same as A but with ARI score. C,D same as A,B but
comparing EM with Sinkhorn-EM
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Summary of experiments, N=200
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Figure B.3: Performance of three algorithms when the sample size is N = 200.
Each column represents a different dimension d and each row a difference noise
variance σ2.
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Summary of experiments, N=1000
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Figure B.4: Performance of three algorithms when the sample size is N = 1000.
Each column represents a different dimension d and each row a difference noise
variance σ2.
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Figure B.5: Results for the experiment (ii) in Section 6.1: each cluster is charac-
terized by a different diagonal covariance matrix, and these variances are assumed
known (i.e. not estimated in the M-step)

Figure B.6: Results for the experiment (iii) in Section 6.1: each cluster is charac-
terized by the sample spherical covariance matrix with variance σ2Id, but vari-
ances not assumed known and hence estimated in the M -step.
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Figure B.7: Results for the experiment (iv) in Section 6.1: each cluster is char-
acterized by a different diagonal covariance matrix and these variances are not
assumed known and hence estimated in the M -step.
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Figure B.8: Number of components estimation error histograms for the experi-
ment in Section 6.3. Each row represents a different variance σ2. A: results for
different seeds. B: results for the best seed.

B.2 C.elegans experiment details

Results displayed in Fig. 6 in Section 7 correspond to the following semi-
synthetic setup: we considered a vector of true neural locations and colors as
described in Nejatbakhsh et al. (2020). We considered clustering segmentation
tasks in the head (195 neurons) and tail (45 neurons). In each experiment, we
sampled 35 neurons at random either from the head or tail. We sampled covari-
ance matrices whose diagonal entries were sampled from a log-normal distribution
with location parameter 1 and scale parameter 0.1. We considered GMM with 35
samples centered at sampled neural locations prescribed covariances and uniform
weights, and based our inferences on n = 5000 samples from that mixture. In
this experiment, we assumed weights were fixed and well-specified, but we al-
lowed ourselves to fit the (diagonal) covariance matrices. Results displayed in 6
are summaries of 200 × 2 (head and tail) experiments, on each of them we kept
the best of 10 seeds. As in the experiments of Section 6.1 we compared k-means,
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EM, and Sinknorn-EM algorithms, in all cases using the k-means++ initialization
method. Examples of segmentation performance in Fig. 6B were plotted with the
code released with Nejatbakhsh et al. (2020).

B.3 Co-clustering experiment details

B.3.1 Algorithmic details: Suppose we want to perform co-clustering on a N×
M matrix using K × G co-clusters. We consider row and column responsibility
vectors z ∈ RN×K and w ∈ RM×G. We briefly describe the VEM and SVEM
algorithms. We implement the VEM algorithm as described in Algorithm 5.3 in
Chapter 5 of Govaert and Nadif (2013), that we reproduce in Algorithm 1.

Algorithm 1 Variational EM (VEM) for co-clustering in model (28)

1. Input: Data matrix Y , number of co-clusters K and G. Initial values for z and w

2. Initialization: compute

πk =

∑
k zi,k

N
, ρg =

∑
j wj,g

M
, θk,g =

∑
i,j zi,kYi,jwj,g∑
i zi,k

∑
j wj,g

, σ2
k,g =

∑
i,j zi,kY

2
i,jwj,g∑

i zi,k
∑

j wj,g
− θk,g

3. Outer loop: repeat until convergence in θ,σ2,π, ρ)

3.1 Define

Y w
i,g =

∑
j wj,gYi,j∑

j wj,g
, uw

i,g =

∑
j wj,gY

2
i,j∑

j wj,g

3.2 Inner loop in row (k) coordinates until convergence of π, µ, σ2

3.2.1 Update

zi,k ∝ πk exp

(
−1

2

∑
g

(∑
j

wj,g

)(
log σ2

k,g +
uw
i,g − 2µk,gY

w
i,g + µ2

k,g

σ2
k,g

))

3.2.2 Update

πk =

∑
i zi,k

N
,µk,g =

∑
i zi,kY

w
i,g∑

i zi,k
, σ2

k,g =

∑
i zi,ku

w
i,g∑

i zi,k
− µ2

k,g

3.3 Define

Y z
j,k =

∑
i zi,kYi,j∑

i zi,k
, vzj,k =

∑
j zi,kY

2
i,j∑

i zi,k

3.4 Inner loop in column (g) coordinates until convergence of ρ, µ, σ2

3.4.1 Update

wj,g ∝ ρg exp

(
−1

2

∑
k

(∑
i

zi,k

)(
log σ2

k,g +
vzj,k − 2µk,gY

z
j,k + µ2

k,g

σ2
k,g

))

3.4.2 Update

ρg =

∑
j wj,g

M
,µk,g =

∑
j wj,gY

z
j,k∑

j wj,g
, σ2

k,g =

∑
j wj,gv

z
j,k∑

j wj,g
− µ2

k,g

4. Output π, ρ, σ2, µ

In the case that some parameters (e.g. the weights π, ρ or variances σ2) are
known then the algorithm can be simplified by simply skipping the steps that
implement updates of those parameters. The SVEM algorithm consists of a small
variation over the above routine. In the case where π and ρ are fixed then we
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only need to replace steps 3.2.1 and 3.4.1 in Algorithm 1 by the computation of
an entropic optimal transport plan between π (resp, ρ) and a uniform measure
with weights 1/N (resp, 1/M) and cost function given by what is inside of the
exponential term in 3.2.1 (resp, 3.4.1). This computation can be interpreted as
transport towards a weighted version of Y , and we omit the details for simplicity.
The computed optimal transport plan gives immediately rise to responsibilities
z (resp w) as described in the main text.

In the case where ρ and π are also parameters, we considered a variation over
the above scheme where on a small proportion of times we carried out usual VEM
updates in the inner loops (so that we can update weights) and in the rest of the
times we performed the SVEM updates described in the above paragraphs. In our
applications, we performed one VEM update every 6 SVEM updates. We could
have alternatively considered weight updates as described in 3.2, but we did not
deem this necessary.

B.3.2 Synthetic experiments: For the synthetic data experiments in Fig. 7 we
considered K = 5, G = 5 or K = 10, G = 10 co-clusters, noise variances σ2 =
1.0, 2.5 , 5.0, 7.5, 10.0, 12.5, 15.0, 17.5 and sample sizes N = M = 100, 500 (i.e.
the data matrix has N rows and N columns). Each co-cluster mean θk,g was
sampled from a uniform distribution in the interval [−5, 5]. For each parameter
configuration, we considered a number of 40 experiments, and on each experiment,
a number of 5 random seeds. To sample data matrix Y we divided the N ×M
entries into subsquares of size N/K × N/G each. We sampled entries Yi,j as a
noisy version of the corresponding co-cluster mean, i.e. Yi,j = µk,g +N

(
0, σ2

)
if

where (k, g) are indexes for the subsequent where indexes (i, j) belong to. In this
experiment we kept weights ρ, π and variances σ2 and only optimized over mean
parameters θ

As initial values for VEM and Sinkhorn-VEM we used the solution provided
by the spectral method with random initialization as implemented in Scikit-learn
Pedregosa et al. (2011).

B.3.3 Spatial Transcriptomic experiment details We used the Prefrontal Dor-
solateral Cortex spatial transcriptomic data from (Maynard et al., 2021) available
in the R package Pardo et al. (2022). We considered a subset from the original
dataset, sample id 151673: we focused on the expression of the most 1000 genes
(out of 33538) from the sample. We focused on the region with X coordinates
between 139 and 400 (the original ranges were 139 and 498) and Y coordinates
between -521 and -292 (the original ranges were -521 and -109). This subregion
contains the majority of measurements anatomically associated to Layers 5, 6 and
white matter (WM), and we only consider these layers for clustering purposes.
In total, we clustered the resulting N = 1473 spatial measurements out of the
original 3639.

We compared the performance of VEM (Algorithm 1), SVEM and the spectral
algorithm Pedregosa et al. (2011) with ‘scale’ initialization. In all cases, we used
K = 3 row (spatial) clusters and G = 8 column (gene) clusters. As initialization
for VEM and SVEM we used randomly sampled binary assignment matrices
z, w. For VEM and SVEM algorithms We optimized over mean θ, variance σ and
weights ρ, π. In the case of SVEM, weight updates alternated with

Since solutions from SVEM seemed to be stable to changes in random seed, to
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estimate variation in performance, we considered a number of 100 experiments
where each time, we subsampled the original setup with a subsampling rate of
0.5. Bar plots in Fig. 8B are averages over these 100 repetitions.
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